Multipollutant Emission Reduction and CO₂ Control: The Costs of Regulatory Uncertainty

Timothy L. Johnson and David W. Keith
Carnegie Mellon University
tjohnson@cmu.edu and keith@cmu.edu
07 May 2003

Overview

- Motivation
- Multipollutant Control Scenarios:
 Technology paths and mitigation costs
- Value of Information: The cost of regulatory uncertainty

Motivation

- Technological Synergies: The marginal cost of CO₂ control via carbon capture and sequestration (CCS) would likely be less for electric power plants that must meet stronger "3P" (SO₂, NO_X, Hg) emission limits than for those that do not.
- Uncertainty regarding the timing, stringency, and integration of the associated emission limits, however, may impose significant costs.

MP and CCS: Key Questions

- What is the economic value of coherent multipollutant (MP) regulation?
- When is the value of knowledge greatest?
 What scenarios produce a significant value of information effect?

Analytical Perspective

- Middle ground niche
 - An electric system model: more technology than macroeconomic assessments, more endogenous economics than plant-level analyses
 - Timeframe: between Kyoto (now less than a decade) and integrated assessment models (~ 100 years)

Need to Consider:

- Plant dispatch
- Temporal dynamics: gas prices and demand
- Existing generating capacity (sunk capital)
- Regulatory timing

An Electric Sector Dispatch Model

- Bottom-up, engineering-economic framework
- Determines: (1) new capacity and (2) utilization of installed capacity for each time period to minimize NPV of total costs
- Meets demand for the MAAC NERC region (the centrally-dispatched PJM-ISO)

What's in the Model:

- Linear optimization: 16352 decision variables, 2172 constraints
- 40 year time horizon (5 year periods)
- 12 generating technologies + MP and CCS coal plant retrofits
- Technologies characterized by: capital, non-fuel VOM, and FOM costs; fuel type; thermal efficiency; max availability; emission control technologies

What the Model Does Not Try to Do:

- Predict MP or CCS technology costs
- Capture demand and fuel price elasticity effects
- Include experience (learning) cost reductions and performance improvements

MP (3P) Reduction Scenarios

- BAU (EIA, AEO2003): Flat SO₂ and NO_X emissions through 2025; 1.1% CO₂ increase
- "Clear Skies"
- "Jeffords" (3P only; CO₂ limits varied independently)

MP (3P) Reduction Scenarios

	% Reduction from 2000 Levels By		
	2008	2018	
	Clear Skies		
SO_2	60 (by 2010)	73	
NO_X	58	67	
Нд	46 (by 2010)	69	
Jeffords (S.556)			
SO_2	83	-	
NO_X	83	-	
Нд	90	-	
CO ₂	23	-	

BAU Average Generation vs. Time 0 \$/tC

BAU Average Generation vs. Time 150 \$/tC

BAU Average Generation vs. C-Price in 2025

"Clear Skies" Average Generation vs. C-Price in 2025

"Jeffords" Average Generation vs. C-Price in 2025

Cost of CO₂ Mitigation

Evaluating Uncertainty: Generic VOI Framework

Uncertain Decision Tree

```
EV_{Uncertain} = minimum of:

{p_A * NPV(Expect A) + p_B * NPV(Expect A)}

{p_A * NPV(Expect B) + p_B * NPV(Expect B)}
```


Clairvoyant Decision Tree

$$EV_{Clairvoyant} = p_A * NPV(Expect A) + p_B * NPV(Expect B)$$

Value of Information

- VOI = EV_{Clairvoyant} EV_{Uncertain}
- But, the largest VOI may occur for an expected C-price intermediate to A and B; the (stochastic) optimization framework takes this into account.

VOI Results

	VOI for a Step C-price in 2020 (in yr. 2000 100 million \$)	
Scenario	75 \$/tC	150 \$/tC
BAU	1.9	2.3
Clear Skies	3.8	2.8
Jeffords	5.0	6.0

Additional Slides:

BAU Average Generation vs. Time 75 \$/tC

"Clear Skies" Average Generation vs. Time 0 \$/tC

"Jeffords" Average Generation vs. Time 0 \$/tC

BAU Emissions 0 \$/tC

BAU Emissions 150 \$/tC

"Clear Skies" Emissions 0 \$/tC

"Jeffords" Emissions (w/o CO₂ Cap) 0 \$/tC

